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Abstract

This paper presents a probabilistic analysis of plausible reasoning about defaults and about likelihood.

"Likely" and "by default" are in fact treated as duals in the same sense as "possibility" and "necessity _.

To model these four forms probabilisticaliy, a logic QDP and its quantitative counterpart DR are derived

that allow qualitative and corresponding quantitative reasoning. Consistency and consequence results

for subsets of the logics are given that require at most a quadratic number of satisfiability tests in

the underlying propositional logic. The quantitative logic shows how to track the propagation error

inherent in these reasoning forms. The methodology and sound framework of the system highlights their

approximate nature, the dualities, and the need for complementary reasoning about relevance.

Index Terms: default, likelihood, plausible reasoning, qualitative reasoning, subjective probability.
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1 Introduction

Default reasoning is a form of non-monotonic reasoning which can be introduced by Delgrande [1] as follows:

Many common sense assertions about the real world express default or prototypical properties of

individuals or classes of individuals, rather than strict conditional relations. Thus, for example,

"birds fly" attributes the property of ftight to birds, even though birds with broken wings generally

don't fly, and quite probably no penguin flies. The import of "birds fly" then certainly isn't that
all birds fly, but rather is more along the lines of "typically birds fly".

This form ofdefaultreasoning then isconcerned with drawing "typical"conclusions.There isa continuously

growing and divergingvarietyof theoreticaltreatmentson thisand other forms ofnon-monotonic reasoning

[2,3,1,4,5,6,7,8].

Likelihood reasoning,another form "ofplausiblereasoning,ismore concerned with drawing "likely"con-

clusions.For example, itis"likely"orreasonablypossiblethata cointossedtwicewillland heads both times,

although thiscertainlyisnot "typically"the case.Itisnot "likely",however, that a coin tossedtwice will

land on itsside one of those times. Although the laws of physicsmight treatthisas a "possible"outcome,

formost practicalpurposes itisnot. When one isconsideringpossibleoutcomes, ratherthan lookingat all,

likelihoodreasoning isintended to be appliedto find only those outcomes that are reasonably possible.A

historicalperspectiveand furtherdiscussionforthisform ofreasoningcan be found in [9].

The relationshipbetween probabilityand plausiblereasoningisbest introduced by Polya [10,Chapter

XV] in hiswork on reasoning in mathematics. Polya introduceda system of guides tothe mathematician of

the form:

[Given a conjecture,]the verificationofa consequence rendersthe conjecturemore credible.

Our confidencein a conjecturecan only increasewhen an incompatible rivalconjecturehas been

exploded.

These guideswere based on beliefabout conjecturesmodelled assubjectiveprobabilities.Plausiblereasoning

about defaultand likelihood,however, has more often been modelled in AI using purely logicalformalisms

[5,1,6,9]or non-standard probabilisticmethods [11,12,13],although probability-motivatedapproaches exist

[7,14]. Another form of reasoning seen in areas such as qualitativephysics and model-based diagnosis

systems isthe qualitativeand approximate reasoning about physicaldevises.In thispaper we combine the

two paradigms, probabilisticand qualitative/approximate,to model defaultand likelihoodreasoning,and

so take up Polya'stheme more fully.

Surprising to some, it iscontroversialwhether these plausiblereasoning forms can be modelled with

probabilitiesI [15,4,16].Likelihood reasoning and some forms of defaultreasoning,however, willalways

remain problems of uncertainty or incomplete information.With some forms of non-monotonic reasoning,

such as the closed-worldassumption used in database systems and PROLOG, uncertainty does not exist

because the defaultisactuallya convention. These exceptionsaside,there comes a time when something

that iscurrently"typically"or "likely"to hold becomes known trueor false.Until that time, we are in a

stateofuncertainty.However welllogicalsystems may cope with modelling thesereasoningforms,we should

at leastsee how they can be modelled by a theoryofuncertaintylikeprobability.Perhaps thereismore to

learn?

lChee_eman has said [15, p1002]:

Unfortunately, the logical style of reasoning is so prevalent in AI that many have attempted to force intrinsically

probabilistic situations into _ logical straight jacket with predictable limited succe_.



This paper follows the view that subjective Bayesian probability theory provides a benchmark against
which methods for reasoning about uncertainty can be compared. The theory is a normatire theory of

reasoning about uh_ertainty, which means it gives a prescription for how uncertain reasoning should be done.
The prescription itself has been derived from a set of fundamental axioms about belief (an introduction to

this in the AJ context is in [17]). One can model default and likelihood reasoning as either qualitative or

quantitative approximations to full normative probabilistic reasoning. One can then argue that the resulting
model seems to exhibit the required properties, and compare the model with some existing methods.

A logic QDP (a mnemonic for qualitative default probabilistic logic)is developed here from a suitable

quantitative counterpart DP as a demonstration. This yields a probabilistic system as a canvas on which a
number of more significant issues can be sketched. These issues are: (1) the interplay between quantitative

and qualitative forms of plausible reasoning, (2) the duality between default and likelihood reasoning, (3)

the approximate nature of these reasoning forms, for instance, the propagation of errors in reasoning, and

(4) the need for complementary reasoning about, for instance, relevance.
The logic O,DP, being probabilistically based, is easily able to express sentences 2 such as "most birds

fly". This is using a _default" conditional style operator _::_" as in: Bird(z) =_ Flies(z). Similarly, _an
Australian is likely to drink Foster's "3 can be represented with a "likely _ conditional style operator "_-_ as in:
Australian _- Drin_s-Foster's. This operator also has iterated forms indicated by numeric superscripts,

_.2,, that express lesser degrees of likelihood, as in: Australian _-_ Drinks-another-Foster's, which

expresses the fact that, at least occasionly, an Australian will drink even more Foster's.
Surprisingly enough, QDP is also able to express sentences more in the spirit of autoepistemic [18] and

default logics [2]. We can interpret the sentence "a professor has a Ph.D. unless known otherwise" two ways:

o(Pro/(z) ^ Phd(z)) _ (Pro f(z) _ Phd(z)),

o(Prof(z) A Phd(z)) _ O(Prof(z) --, Phd(z)) ,

where the "O" operator represents necessity interpreted as _known with certainty _, and the dual _o_ operator

represents possibility interpreted as _the negation is not known with certainty _. Read as _if it is possible

that a particular professor has a PhD, then the professor most likely has a Ph.D. _, and "if it is possible

that a particular professor has a PhD, then the professor definitely has a Ph.D. _ respectively. The default

logic representation, from Prof(x) ^ M Phd(x) infer Phd(z), corresponds to the second reading. So the

possibility operator, "o", behaves rather like the M operator of default logic.
The default component of the logic QDP is a variant and extension of Adams' conditional logic [19],

applied to default reasoning by Pearl [7]. The probabilistic semantics of QDP differs slightly from Adams'

logic however, because QDP is developed as a qualitative model for order of magnitude reasoning about

probabilities, rather than being based on infinitesimal arguments. Like Adams' logic, QDP can be combined
with a notion of relevance or causality to resolve the so-called default paradoxes: the Yale shooting problem

[8] and "can Joe read and write? _ [7]. The logics also resolves the "vanishing subclasses" paradox [20].
These three paradoxes are discussed in Section 5. A fourth paradox is the lottery paradox [3], considered
in Section 3. This has a version both in default and likelihood reasoning, and provides an example of the

propagation of errors inherent in these reasoning forms.
The logics has been modelled after Delgrande's modal conditional logic NP which allowed reasoning

about default rules. Likewise, reasoning about defaults and likelihood is an importan t feature of the approach

here. For example, suppose you know friends have travelled to Australia. Then they are likely to have visited

Sydney. Although any visitor to Sydney will typically see the Sydney Harbour Bridge, it is only likely that

they will visit Bondi Beach. We can infer that your friend is likely to (rather than _typically ") have seen
the Harbour Bridge but is less likely to have visited Bondi. In QDP, this argument can be summed up as

2Although propositional sent_ces are dealt with throughout, pseudo-fa_t-order sentences will sometim¢_ be used. They are
effectively propositional if there are known to be a Finitenumber of constants, no qtm.nti_ers are a.Uowed, and a sentence with
variables is intended to represent A sentence schem_

3For the record, many Austra/ians don't. Some drink XXXX, othe_ Swan .....



follows:

true _,- Visit-Sydney(Bruce)

Visit-Sydney(z) =_ See-Harbour-Bridge(z)

Visit-Sydney(z) _ Visit-Bondi(z)

_Ov_" (true _- See-Harbour-Bridge(Bruce)) ^ (true _,-_" Visit-Bondi(Bruce)) .

Consistency and consequence tests developed for subsets of the default and likelihood components of the

logics also show how this form of reasoning can be automated in a manner requiring at most a quadratic

number of satisfiability tests in the underlying propositional logic. With a careful choice of the underlying

propositional logic, the operation can then be quite efficient.
Perhaps most significantly, this reasoning can be easily complemented with error tracking facilities to

indicate when the conclusions from a ch_dn of such plausible reasoning may be coming doubtful. For instance,
it is shown in some circumstances that error when reasoning about defaults can increase at most additively,

while error when reasoning about likelihood can increase multiplieatively. It is not claimed, however, that

these tracking facilities are a substitute for a more thorough probabilistic approach; they are merely an

approximation.
The paper follows the following course. First, the philosophical problem of modelling default reasoning

with probabilities is considered in Section 2. The corresponding discussion for likelihood reasoning is not

given here, because the principle objections in AI to modelling likelihood reasoning with probabilities do

not centre around the use of probability theory at all, but whether the modelling should be qualitative or

quantitative [9], and both are done here. A basic probabilistic framework for plausible reasoning is then
proposed in Section 3. Two logics, one with a probabilistic semantics, DP, anda qualitative version, QDP,

are then introduced in Section 4. Here, the duality between default and likelihood is introduced, and the
consistency and consequence results are developed. Section 5 demonstrates a methodology for applying the

qualitative logic, using relevance, and Section 6 draws some comparisons with other probabilistic approaches.

2 On Modelling Default Reasoning with Subjective Bayesian

Probability

Non-monotonic reasoning is generally considered to have three broad forms [4,18]: antoepistemie reasoning is

reasoning about serf-knowledge of beliefs [18], for instance, "if I had an older brother I would know about it";
conventions are used in the interpretation of natural language and with the closed-world assumption often
made for database systems; and typicality or default reasoning is the form discussed in the Introduction.

To illustrate the use of convention in natural language, consider the sentence "Birds lay eggs" [16], which

is certainly not true for the male half of the bird population. The sentence is more accurately stated as

"[Female] birds lay eggs [to reproduce]". The parts in the square brackets are implicit. Most people realise
that male birds cannot lay eggs, so in the interests of brevity, the speaker leaves "female" to be inferred
from the remainder of the sentence. This implicit convention is handled in nonmonotonic systems using

knowledge of the form "an X is a Y unless known otherwise". As illustrated in the introduction, this form

can also be represented in a probabilistic framework using the probabilistic version of the possibility and

necessity operators.

When modelling the third form, typicality or default reasoning, we are hampered by the fact that there
is little consensus as to its exact nature [20]. Hanks and McDermott [8] say,

While it is not entirely clear ezaetly what constitutes default reasoning, the phenomenon com-

monly manifests itself when we know what conclusions should be drawn about typical situations

or objects ....

Neufeld, Poole and Aleliunas [20] make an even stronger statement. They say,



What, then, does a defaultmean.? Within the defaultlogiccamp, we know of no work which

provides a semantics for defaults,in the sense that an experiment is described that can be

performed in the semantic domain to verifythe truth ofa default.

However, there is general agreement that default reasoning is a form of "defeasible inference', or "plausible

reasoning" [21,8],and thatdefaultconclusionshave some (oftensmall [21])degree of uncertaintytothem.

Given that defaultreasoning isan admittedly specialisedform of reasoning under uncertainty,itis

natural to pose the question: can probabilitytheory model defaultreasoning? (See also [7].)Criticsofa

Bayesian approach claim thatprobabilitiesarejustnot suitedfordescribing"prototypical"knowledge. Most

arguments, however, are based on some misunderstanding.

Nutter [16]givesthe followingargument:

For instance: if... the by now tormented example "Birds fly"reallymeans "Most birdsfly",

then birds don't flyin spring.In the nestingseason,baby birdsoutnumber adults.Baby birds

don't fly.Hence in the nestingseason,"Most birdsfly"isfalse.

To the Bayesian, "Most birdsfly"isinterpretedas "ifwe know nothing elseabout a particularbird,then

that bird most likelyflies'.Notice the "most likely"conclusionisconditionedon our current knowledge

about the bird. In particular,ifwe know itisnestingseason,we cannot conclude the bird most likelyflies

because we do now know some additionalthing about the bird. Two rulesare relevantto the situations

Nutter gives:"Most birdsfly"and "In the nestingseason,most birds don't fly".Ifwe do not know that

itisthe nestingseason,then the firstruleisapplicablebecause itusuallyisnot the nestingseason. The

importance of conditioningprobabllisticstatements with context or current knowledge isa key featureof

probabilisticreasoning and the cornerstoneof the subjectiveBayesian approach.

McCarthy address a similarconcern [4,p92].

Note that the generalprobabilitythat a bird can flymay be irrelevant,because we are interested

in the factsthat influenceour opinion about whether a particularbird can flyin a particular

situation.

Classicalstatistics,with itsconcern about long term frequenciesand samples spaces,can have problems in

adapting generalknowledge to specificsituations.The abilityto adapt knowledge to particularsituations,

however, isa hallnmxk ofBayesian methods. In thiscase,suppose we know that the bird isa male yellow-

belliedwarbler,but we have no knowledge at allabout thistype ofbird,or even what they may be similar

to. The only relevantknowledge we have isthe generalprobabilitystatement that most birdsfly.In the

absence of information to the contrary,we assume that other detailsabout the bird are irrelevant(this

isthe maximum entropy argument [7]),which leadsus to the quitereasonableconclusion that most male

yellow-belliedwarblers fly.We can now reason about thisparticularbird.

There are, however, strong arguments that defaultreasoning should be modelled by probabilityw/th

caution. In practice,an intelligentsystem may not be able to supply preciseprobabilitiesfor itsbeliefs

and may not be able to perform allthe exact calculationsrequired to maintain itsbeliefsin accord with

Bayesian principlesas new evidence becomes available.People certainlycannot. Itisofcourse not just the

computation that causes problems but the communication requiredto prime and then update an intelligent

system with an adequate setofbeliefs.

The normative propertiesofBayesian theoryassuresus that despitetheseproblems, by tryingtoapprox-

imate the Bayesian approach our reasoningat leastremains approximately rational.Essentially,itisthe best

we can do inan inherentlyimpreciseand computationally complex world. This view has been supported in

AI alone ina range of areas [22,23,24,25].



3 A Framework for Plausible.Reasoning

In this section, a basic framework for default and likelihood reasoning is developed. These two forms of

reasoning are referred to below as plausible reasoning. Before presenting the framework, we first consider

some major features of plausible reasoning, and then infer properties that a plausible reasoning system should
have.

3.1 Basic features of plausible reasoning

There are several basic features of plausible reasoning that must effect the design of a plausible reasoning

system. While these can be derived from the probabilistic model presented in the next section, the features

are presented here independently of any probabilistic analysis.

Plausible reasoning is non-monotonic

With standard logical reasoning, conclusions derivable from a set of sentences' increase monotonically as the
set of sentences is extended. That is, if $ logically implies C, and we extend ..q with A, then S A A also

logically implies C.
Default reasoning is known to be non-monotonic [3]; the above monotonicity property breaks down. So

while you might well believe that birds fly, on discovering that a certain bird is a baby bird in nesting

season, you would no longer believe that particular bird flies. So your set of beliefs have extended one
way but contracted another. Similarly, something that initially seems likely can become, with changing

circumstances, well nigh impossible.

Error combines along a chain of plausible reasoning

A second key feature of standard logical reasoning is that if the premises are known to be true, then the

conclusion from a long chain of reasoning steps must also be true. With plausible reasoning, however, there
is an inherent element of uncertainty involved, so it is natural to suspect this key feature might break down.

The famous lottery paradox [3] is an excellent example of this. For a single lottery entrant, Leslie say,
one can conclude by default that Leslie will not win the lottery. But we can apply this sort of reasoning to

every potential lottery entrant. There are two paradoxes here. First, why is it that someone actually wins

the lottery. Second, why does Leslie bother to enter the lottery in the first place.

For a lottery with one million entrants, the default conclusion about Leslie has an obvious statistical error
of one ten-thousandth of 1%, acceptable by most standards. If we make a logical deduction based on one

million such default conclusions, the one million errors certainly combine to give a total error of 100% (after

all, someone definitely wins the lottery). That Leslie would enter the lottery at all is as much irrational
behaviour due to the effect of large sums of money, as it is the result of plausible reasoning. Perhaps it

is because most people do not mind losing one dollar just to be given the remotest chance of winning one

million dollars. In the former, their life is no different; in the latter, well ...

This lastpoint anticipatesthe next basicfeatureofplausiblereasoning.

Plausible reasoning is effected by the decision context

After a system performs plausible reasoning, it would typically decide some course of action. As a result of

the action, the system might make some gain or incur some loss. For Leslie in the lottery situation above
the potential loss is one dollar while the potential gain is one million minus one dollars. This feature of

reasoning is referred to as the decision contezt and the losses and gains as the utilities.

Shoham provides the following illustration of how the decision context can effect plausible reasoning.

... think of making the default inference "people you'll meet on the street will not stab you in the

back" in a city in which only 5% of the population are back stabbers. In this case the relatively



smallchance of being hurt seems to outweigh the computational resources needed to reason about

individual people on the street, and the discomfort of wearing a steel-plated vest. Notice that if
the 5% dropped to 0.00000000005%, we'd take off the armor and stop looking darkly at passers

by.

Clearly, the decision context should be taken into consideration (see also [26]).

3.2 Basic properties of a plausible reasoning system

The above features can be used to argue that a method for plausible reasoning should have certain basic

properties.
A first property is that plausible regsoning needs to be sez_si_i_e bo_h _o _he curren_ ]mowledge of _he

system and to _he decision contezt. This is directly suggested by the features given in the previous subsection.

Sensitivity to the decision context can be handled by targeting a default system for a single decision context.
Now the number of different states of knowledge is potentially exponential in the number of propositional

symbols. So a system could not reasonably keep separate default rules for each possible state of knowledge

and decision context. To get around this problem, a second property seems important: it should be possible

_o reason about plausible rules and _he relevance of different fac_s to _he applicability of a plausible rule.

It may also be useful to give a system the ability to compile plausible rules from some more fundamental

knowledge form.
Third, because of non-monotonicity and error propagation, plausible conclusions need _o be flagged as

such, and should not be confused _flh the current _._ol#ledge. In fact, because of the possible need for

weighing up belief when combining error or considering the decision context, plausible conclusions may need

to be tagged with some form of qualitative or quantitative measure of belief. Whether this is done and how
surely depends on the application concerned; no single approach will be favoured in this paper.

3.3 A probabilistic framework

It is beyond the scope of this paper to cover the basic notions of probability and decision theory underlying
subsequent sections. Suitable introductions from an AI perspective can be found in [26,27,7]. The problem

of the decision context in plausible reasoning is side-stepped here by assuming that a default system is being

prepared for a specific binary (yes/no) decision. In this simple case, a decision has to be made whether some
condition, A say, is "true" or _false'. Once utilities of the problem are taken into account, the problem

invariably reduces to "is Pr(A) >_ p?_ for some p E [0,1]. Given a particular decision context for a binary

decision, we can therefore use approximate inequality reasoning to make decisions in a normative manner.

The notion of probability used here is subjective probability, which is a measure of belief prescribed to
some proposition by an intelligent system. This is represented as Pr(A[B) E [0, 1], interpreted as follows:

a particular intelligent system, on knowing just B, has a measure of belief Pr(AIB ) in A being true. The

"[" operator is called the conditioning operator. Its left hand side is the proposition whose belief is being
considered and its right hand side specifies all current knowledge relevant to A of the intelligent system. A

probability distribution is a particular function Pr consistent with the standard axioms of probability theory.
A probabilistic framework for plausible reasoning is based on the assumptions that (1) plausible state-

ments that are uncertain should be interpreted in some way using subjective probability statements, and

that (2) methods of plausible reasoning which deal with uncertainty should be interpreted as approximations

to subjective probability or decision theory. We shall treat a default conclusion as a plausible proposition in
which one has "sufficiently high belief'. Similarly, a likely conclusion is a plausible proposition in which one

has "belief that it is reasonably possible _. In both cases, the belief is modelled as subjective probability and
should be conditioned on current knowledge using the conditioning operator. Due to the decision theoretic

argument above, both these types of plausible reasoning should, in many cases, be a good approximation to

the normative probabilistic approach.
Notice that this rough probabilistic interpretation of defaults and likelihood automatically provides a

framework which addresses the basic properties of plausible reasoning discussed in this section. Decision



theoryprovidesthe basis for considering the decision context. The conditioning operator provides the mech-
anism for making plausible conclusions sensitive to a system's current knowledge and for keeping plausible

conclusions (on the left hand side) separate from current knowledge (on the right hand side). Probability

theory also provides the potential for developing ways of reasoning about plausible rules, and with the notion
of independence, ways of reasoning about relevance. Some of these connections are explored more fully in

the next section. Finally, probability theory provides a framework for both testing and developing default

rules for a given application, for instance, by learning them from examples.

4 Default Probabilistic Logic

This section introduces two logics for default and likelihood reasoning: a probabilistic logic DP and its

qualitative counterpart QDP. These are applicable in the broad framework given in Section 3 for reasoning
about defaults and likelihood. Notation and semantics of these logics are first covered in Sections 4.2 and 4.3.

Some basic properties of the logics are then outlined. One theme of this paper is the importance of reasoning
about relevance; Section 4.5 motivates this and shows how relevance information can interface with default

and likelihood reasoning. Another theme of the paper is the approximate nature of both these reasoning
forms; Section 4.6 shows how, for small errors at least, the quantitative logic DP can be treated as a simple

numeric extension of the qualitative logic QDP. This last section presents consistency and consequence

results for fragments of both logics.

4.1 Introduction

DP is a propositional logic annotated with probability bounds, and has a probabilistic rather than a possible

world semantics. This allows the sort of inequality reasoning found in Quinlan's INFERNO [28]. Inequality
reasoning is an approximation to normative reasoning about point probabilities when a decision is binary,

as explained in Section 3.3. So the justification for DP is approximation, rather than some fundamental

• principle about intervals or fuzzy sets for reasoning under uncertainty. In this sense, it differs in philosophy

from Ginsberg's suggestion [12] or Dubois and Prade's treatment of syllogism's [13].
QDP has the annotations dropped, and the default component is almost identical to Geffner and Pearl's

logic of defaults [7,29] borrowed from Adams' logic of conditionals [30,19]. QDP is also similar to Delgrande's

conditional logic NP [1].

QDP is designed to be a qualitative counterpart of DP. It is intended to be an approximation to DP for

reasoning about "small" but not infinitesimal probabilities. The semantics of QDP complements DP and
is based on order of magnitude reasoning. Like NP, dynamic aspects of plausible reasoning (for instance,

involving action and time) are not handled directly by either DP or QDP, although they can often be
handled with a simple situation calculus, as is done in Section 5.3. In the general case, an extension of the

logic would be required.

4.2 Basic notation

A standard propositional language denoted Lp is used here. This is formed in the usual manner from a

finite set of atomic propositions P = {Pl,...,P,} together with true and false, the standard connectives,

-- (negation), -. (conditional), ^ (conjunction), V (disjunction) and .-_ (biconditional). "_ A" denotes that

propositional formula A is a theorem of the usual propositional logic.
Probability distributions can be given over the language Le as follows. An eren_ 8pace Ep, a mutually

exclusive and exhaustive set of events, is readily constructed from a subset of Lp. Given n atomic propositions

P as described above, this would have cardinality 2" and one such set is given by

Ep = { L, ^... ^ L, Ifor i = i,...,n, Li = p_ or -'Pi} • (1)



A probabilitydistributionPr :Ep ,--*[0,1]maps eventstomeasures ofbelief.For A, B G Lp

PrCA) =
eEEv
De--.A

{ P'V---q-P-A_ ifPr(A) > 0
Pr(A)

Pr(B[A) = I otherwise

In many probability texts, if Pr(A) = 0 then Pr(B[A) is undefined. Instead we assert that if Pr(A) = 0

then Pr(BIA) -- 1. This means we can reason about conditional probabilities even if the antecedent of the
conditioning is false. A probability distribution like Pr above is termed a distribution over Lp.

The probabilistic logic DP describes constraints on probability distributions over the language Lp. It
is built on the language Dp that is constructed from Lp together with four modal operators: the unary
connectives n (necessity), o (possibility), and the binary connectives =_ (default with error bound) and _s-

(likelihood with lower bound). There is no nesting of these operators. Nesting would represent second and
higher-order probability statements [31], as used in learning to reason about belief in probabilistic models

[25], but is unnecessary for the initial treatment here. The operators can be interpreted as follows.

DA: A is necessarily true in any situation.

oA: Some situation can possibly arise in which A is true.

A ::_ B: Given that you know just A about the current situation, it is safe to infer 13 by default (with

error in belief at most e).

A _-_ B: Given that you know just A about the current situation, B is at least likely (with belief no less

thane).

In the language QDp the subscriptsare dropped. QDp alsohas successivelyweaker forms ofthe likelihood

operator. A _ B denotes "likely",whereas A _-'_B would denote "barelylikely",etc.This isrelatedto

the iteratedlikelihoodoperator found in [14].

A _-" B: Given that you know justA about the currentsituation,B isat leastlikelytobe ...tobe likely

(toorder n).

Both the likelihood and default operators are conditional operators, in a similar sense to [1]. For instance,

in the cases above each is conditioned on A. It win be shown later that it is unnecessary for the necessity

and possibility operators to have conditional forms.

Definition 4.1 The sentences or well formed formulae (wifs) o,f Dp comprise the least set such that

I. If A E Lp then rnA is a wff.

_. U A, B 6 LI, then A =>_ B £s a wff forO <_e < l.

8. If D, E 6 Dp then "_D and D --* E are wffs.

Conjunction (A), disjunction (V), and biconditional (*-.) on sentences in Dp, and possibilitu (o) and likeli-

hood (_-) on sentences in Lp are introduced by definition.

Definition 4.2 The sentences or well formed formulae of QDp consist of the sentences of Dp with the

numeric subscripts dropped from "-_ " and "_ ". The _ " operator raa_l have optional integer superscripts

weakening the order of likelihood.



Some examples of QDP sentences were given in the introduction. The four modal operators have operator

precedence midway between disjunction and conditional/biconditional. So a disjunction binds before a

de_ult operator, and a default operator binds before a conditional. For instance, the sentence

AVBAC=_ D--*oEAF

is identical to the sentence

Although,

is identical to the sentence

((A V (B A C)) :m D) --_o(E A F).

oAA B =_ C

(on)A(B= C),

because otherwise the sentence does not parse.

4.3 Semantics

In DP, "_l,r D" denotes that D 6 D/, is true for the probability distribution Pr. Pr plays a role not unlike

an interpretation in standard propositional logic.

Definition 4.3 Given a probability distribution Pr on Lp, "_=Pr " is defined on sentences from Dp as

follows.

1. _p, mA if and only if Pr(A) = 1.

e. _p, A =:., B if and only ifPr(BIA) > 1 - ,.

8. _Pr "D if and only if not _p, D.

4. _pr D "* E if and only if not _l,r D or _Pr E.

Possibility and likelihood are by definition dual operators for necessity and default respectively. "oA"

is defined as "-,m-,A", so _p, 0.4 if and only if Pr(A) > 0. "A _'e B" is defined as "",(A =:,, -,B)", so

A _'-e B if and only if Pr(BIA ) > e. In addition, "l::_e B" is shorthand for "true _, B', and likewise for

If the necessity operator were to have a conditional version, it would have the semantics Pr(BIA ) = 1, but

since this is equivalent to Pr(A --* B) = 1, a conditional form of necessity can be adequately constructed as

[3(A ---, B). Likewise, a conditional version of the possibility operator can be constructed as oA ---* o(A A B).

A map translating probabilities to subsequent modal representation is given in Figure 1. By convention,
_=:," is subscripted by greek letters e, 5, etc., which are intended to be small (<'< 1), whereas, "_-" is

subscripted by the letters e, f, etc., which are intended to be not as small. This is no absolute restriction;

it gives an indication of the intent of the sentences.

Definition 4.4 A sentence D E Dp is a theorem of the probabilistie logic DP if _Pr D for all possible

probability distributions Pr. This is denoted _=O_' D". D is a consequence of a set of sentences F if there

are D,,...,D, E r such that _DP (D, A ...AD,) ---, D. D is consistent if-,D is not a theorem of DP.

To obtain qualitative rules about default and likelihood from the quantitative rules in DP, we can

perform order of magnitude reasoning. We can consider a representative default error, e, where e might
be less than 0.01, or whatever the decision context requires. Likewise, we can consider a representative

default likelihood, e, where e might be greater than 0.05, say. The choice for modelling particular limits

rather than some arbitrary infinitesimal is motivated by the decision theoretic argument at the beginning

of Section 3.3. In order to approximate the behaviour of our reasoning with these particular limits in mind,

we can parameterise the system by _ and e and consider only approximate calculations to 0(_) and O(e).
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A maptranslatingprobabilitiesto thesekindsof qualitativevaluesisgivenin Figure2. Thehashedregions
representthosefuzzyboundaries where the qualitative reasoning becomes most susceptible to error.

QDp is defined in a manner such that e and e are arbitrarily small, but • is also arbitrarily smaller
than e. Of course, it is unrealistic to expect arbitrarily small magnitudes for • and e to be achieved, let

alone the right relative magnitudes. This, however, is irrelevant, as far as the application of the logic is
concerned. The _arbitrari]y small" magnitudes are only being used as a theoretical device to investigate the

approzimate behaviour of notions like %:_" and "_-" for • being small and e being not quite as small (see

also [7, Section 10.2.4]). In addition, the choice of relative magnitude between • and e is a particular design
decision that might just as well have been made some other way. Applications of QDP should of course take

this into account.

Definition 4.5 A sentence D E QDp is a theorem of _he qualitative probabilis_ic logic QPD if _here ezist8

a theorem D' E Dp corresponding to D (thai is, identical ezcep_/or any super or subscripts), in _nhich all

subscripts to "-_ " and "_ " are parame_erised by 8ome variables e and e and each subscript to "-_ " is of

order e as e approaches 0 and e remains finite, wad each s_tbscript in D _ corresponding to _"_"" in D is of

order e" a8 e and _ approach O. This is denoted "_=ODP D'. Consequence and consistency are defined a8

before.

From the definition of _.-" (for e > e) it follows that

_w -_(_-_A ^ _ -_A).

Consequently,
_qDp -,(_- A ^ _ -_A). (2)

That is, if something is likely, its negation cannot be true by default. But the complementary sentence

(_- A V t=_ "-A), is not a theorem.
It follows directly from this definition that the set of theorems of QDP is closed under application of

modus ponen.s and conjunction. That is,

_vP D and _z)P D _ E implies _DP E,

_DP Dand _DP E if andonlyif _/)p D AE.

Because the definition of QDP is based on an order of magnitude argument, there are potential pitfalls with

these closure properties. Order of magnitude arguments invariably give dubious results when the constant
factors become too large. Suppose a lottery has 1,000,000 participants. The following sentence can be

shown to be a theorem of DP.

1,000,000

A t=t,t (person i will not win the lottery) ----* _::'1,000,00o._ (no-one will win the lottery) . (3)
i----1

Moreover, replacing the error bound 1,000,000. e by 999,999 * • yields a sentence that is not a theorem of

QDP. Without the error bounds, the sentence would seem to read _if, by default, any particular person will
not win the lottery, then, by default, no-one will win the lottery at all _. The illusory lottery paradox has

1 the rightreappeared. In DP this is not the correct reading because with the natural value for e, L0oo,ooo'

hand side of rule (3) is impotent (its default error is 1). In QDP unfortunately, it is the correct reading:

QDP drops the subscripts (both are of order e as • approaches 0) and loses the error information.

If we wish a purely qualitative default logic to be closed under conjunction and modus ponens, two

seemingly intuitive properties, then we have no choice but to accept that the above kind of anomaly may
occur. People get around this with an intuitive knowledge of where plausible reasoning is likely to break down,

for instance, by not making default or likelihood inference to any great depth: _don't rest your argument on

too many assumptions, something is bound to go wrong along the way! _. Default and likelihood reasoning

may well produce incorrect results when carried on indefinitely; they should, however, be _locally" correct.
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Imprecision is an inherent property of plausible reasoning; so knowledge of how to contain the imprecision

is a prerequisite for-safe plausible reasoning. Hence the importance of DP in understanding QDP.

4.4 Basic theorems

This section introduces a few basic theorem schemata, and discusses several notable but unrelated properties

of the logics. Examples of using the logic QDP are given later in Section 5.
First, the default and likelihood operators can be broken down into two components, according to whether

the antecedent is possible or impossible. This is done using

_=QDP A_B .-. (m-_A V oAAA_B). (4)

The second component here, o.4 A (A =:, B), is referred to as the proper default operator, and likewise for the

likelihood operator. This corresponds to Adams' notion of the conditional over "proper" distributions [19,

p49], that is, distributions where the antecedent of the operator must be possible. The unmodified, improper
version of the default, A =_ B, corresponds to Adams' original notion of the conditional [30]. While the

mathematics of the improper default is generally easier, it is sometimes better to break down the default

and likelihood operators into the two components, and then put the pieces back at the end.

Second, both DP and QDP can be seen as natural extensions to propositional logic. For instance, the
theorems for "O n given later in Table 1 encode the provability relation in propositional logic. The following

lemma further highlights the connection.

Lemma 4.1 First, all substitution instances of the theorems and rules of inference of standard propositional

logic that are sentences of Dp hold for DP. Second, in DP necessary equivalences can be substituted. That

is,
_vp O(A _/3) -_ (D(A) _* D(/3)) ,

zvhere D(A) denotes any sentence of Dp with an occurrence of the propositional formula A in a particular

position. Corresponding results for Q DP hold.

Third, some examples of theorem schemata of DP are given in Tables 1-3. These hold for d, e, e and
6 all less than _. Certain dual forms, either on "O" or on "=:,', are given in the third colunm. These are

obtained by restructuring the formula and converting either "0" or "::_" to their dual. In each case, either

the original form or the dual form can be proven by the consistency or consequence theorems presented in
Section 4.6. For each DP theorem in Tables 1-3, the QDp sentence obtained be removing subscripts (and in

the case of the duals for theorems T14 and T16, making the "_-ed" operator ,_2-) is a theorem of QDP.

One important aspect of any DP theorem is the relationship between errors on the defaults and likeli-

hoods. For instance, we can rewrite theorem TIT as

(A _-, C) ^ (/3_'d C) --'A V/3 _-/ C,

and note that thisonly holds forsome valuesoff, and in particularholds for

ed
f < < rffm(e,d).

- e+d-ed -

In this case, f represents an error propagation function, which relates the errors in the DP theorem. If we

were to apply this theorem in some chain of reasoning to deduce A V/3 _- C, then we could either choose

to forget about the error f, as we implicitly do when using QDP, or we could use the error propagation
function to compute a value for f from e and d. Bear in mind that an error propagation function only

represents a worst-case bound on error. If we were to do a more precise probabilistic analysis, we may find
that error has shrunk to nothing, however, the error propagation function represents an upper-bound on
what error can be. In Section 4.6 it is shown that for small errors, DP behaves just like QDP, so a system

for reasoning about defaults and likelihoods can be constructed using the qualitative logic QDP, and then
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optionally, error tracking facilities can be grafted on top with the use of error propagation functions to give

approximate probabillstic reasoning.
Finally, theorems of the logics can be generalised by uniformly changing conditioning information.

Lemma 4.2 Any theorem of DP (QDP) can be transformed to another by uniformly changing conditioning
information. Given conditioning information C, a formula D i8 transformed by uniformly applying the

following transformation8 to all non-propositional operators in "otrue -* D:

OA D(C-.A)
oA _ o(C ^ A)

Versions of some of the theorems extended using this transformation are given in Table 4. Notice that

for theorems Tl1', T12', T13', and T14', the initial term %C --*" has been dropped: this is safe because
the "::_" and "_-" operators are always true and false respectively if the conditioning part is necessarily

equivalent to false. A similar situation holds for theorem T6'.

4.5 Relevance

The antecedent of a default or likelihood corresponds to the context in which the rule can be applied. So

the rule B =_ C can be applied when we know just B, nothing more or less. This feature is inherited from

the semantics of the conditioning operator in probability theory. As a result, defaults and likelihoods cannot

have their antecedents arbitrarily specialised. That is, the QDp sentence

(B _ C) -* (A^B _ C)

is not a theorem of O,DP; so the context B cannot in general be specialised to include other information, in
this case A.

A second related feature of the logics is that there is no transitive relation applying to defaults or

likelihoods. The same holds for NP [I, Section 7]. That is, the QDp sentence

(A B)^ (B c)-+A c

isnot a theorem of QDP. For instance,a counterexarnpleto thistra_itivesentence isthat penguins are

birds, most birds fly, and penguins do not fly. So we would not expect the sentence to be a theorem. However,

if we are told that the yellow-bellied warbler is a bird, and know nothing else about it, it is quite plausible

to us that the warbler should fly.
So for plausible reasoning in certain situations, we would like some form of transitive reasoning. Notice

the QDp sentence
(.4 _ B) ^(.4^B _ C)-. A _ C

is a theorem of QDP (T12' in fact). Suppose we can obtain some additional information that implies the
rule B =_ C is the same as A ^ B =_ C, so the condition A in the antecedent is not relevant. Then this

additional information together with theorem T12' shows the original transitivity form above does hold.
This ability to modify the antecedent of a default or plausible rule requires reasoning about relevance,

where a condition in the antecedent is irrelevant if it can be added or deleted and still maintain the correctness

of the rule. In probability theory, such information can be obtained in a number of ways. We can represent

this information using the notion of independence, and in a more limited sense, following Neufeld et _I. [20],

the notion of favouring.
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Definition 4.6 Proposition A is independent of proposition B given proposition C if

Pr(BlC )= Pr(BIC ^ A) .

Proposition A favours proposition B given proposition C if

Pr(BIC) < Pr(BIC ^ A) .

Lemma 4.3 If propoJition A is independent of proposition B given proposition O then the following sen-

teneea of QDp are true:

C=B ---. (C^A)=B,

C_A _ (CAB)=_A,

C_-A .--. (C^B)_-A,

C_-B .--. (C^A)_-B.

ff proposi_ion A favours proposition B given proposition C t]ten t]te sentences above onh./ ]told for t]te forward

direction, _]tat is, replacing "_--," b_/ "--*".

It should be clear from this lemma that methods for reasoning about relevance are vital in plausible

reasoning in order to modify plausible rules so they can be applied to each particular context. Some examples

are given in Section 5. Causal (or Bayesian) networks can be used for this form of reasoning, and the

maximum entropy method provides a way of making independence assumptions "by default" [7].

4.6 Consistency and consequence

The question of whether a sentence from Dp is consistent can be converted to the question of whether one of
• a set of simplex problems in the 2" variables {Pr(p)[p E Ep} has a solution. Consequently, DP is decidable

(this is similar to Probabilistic Logic [32]). For the purposes of this paper, it is not worth obtaining axiom
schemata and rules of inference for the whole of DP, since we are really only interested in the case where

the errors are quite small. A system encompassing the whole of DP would most likely degenerate to the
kind found in [33, pl0], where the schemata is close to an enumeration of primitive operations in the simplex

algorithm. Fortunately, a different approach is available. Adams [30,19] has developed tests for consistency
and entailment in his conditional logic, which have been extended by Goldszmidt and Pearl [34]. Similar

consistency and consequence tests are presented below for the default and likelihood components of DP,
and are easily adapted to QDP. These results show that reasoning can be performed using the qualitative

system QDP, and the approximate error bounds of DP propagated concurrently. In particular, default

errors propagate additively.
Tests on consistency and consequence are presented below in terms of a clausal form. Consider the default

component of QDP. An arbitrary sentence containing the defaulf., possibility and necessity operators can

be turned into a conjunction of clauses, where each clause has the form

IDU Ai¢Iv o_ AiEI,_ Ai =_ Bi _ ViElcGi =_ .Hi,

for some index sets Iv, It, and Ic. Notice that all necessity and possibility operators have been gathered

in the antecedent of the clause, by converting -.iDA to o-_A where necessary, and all the necessity operators

have been combined into one using theorem T3.
It is also of interest, though not essential for the development of this section, to consider a more precise

interpretation of what it means for a clause to be a theorem in QDP. Lemma 4.4 uses the above clausal

form to reinterpret the definition of a QDP theorem.
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Lemma4.4

HqDP QU A_EIv oV_ A_¢s_ A_ =_ B_ ---* ViEzcGi ::_ Hi ,

if and only if the're ezists a 6 and 17 such that for all e < _7

_DP QU Aiezv oI_ Ai_z_ Ai =_, Bi --* ViezeGi =_6, Hi •

For the Dp sentence in the lemma, 5 is an error propagation factor, and 5e is an error propagation function,
which in this case is linear. The larger the value of 6, the faster error can propagate when this particular

clause is applied in some chain of reasoning. By comparison, Adams' notion of entailment corresponds to:

if and only if for all • there ezists a 6 such that

_DP mU AitXv oVi AItXA Ai =_6 Bi --_ Vi¢;cGi =:_, Hi •

The difference between the two notions is that in QDP error is restricted to propagate linearly.

Likewise, we can convert sentences containing the likelihood, necessity and default operators in a clausal

form. The corresponding notion of a QDP theorem is given in Lernma 4.5.

Lemma 4.5

_qnp nU AiGXv o1_ Aiex_ Ai =_-"' Hi --" VitzcGi _p.m, Hi ,

if and only if there ezists a 5 and _7 such that for all • < tl

_DP DU AiEZv O_/_ AiEIA Ai _-,., El --_ VitzcGi _-6,-, Hi •

In this case, the error propagation functions, 5e m', are polynomial, and 5 is the error propagation factor.
Since a smaller likelihood represents more room for error, the smaller the value of 5, the faster error will

propagate when this particular clause is applied in some chain of reasoning.
l%esults below on consistency and consequence of clauses using the default operator are extensions of

several theorems in [30,19], and similar extensions can be found in [34], although Adams' terminology is not
used here. The extensions introduce necessity and possibility. Consistency turns out to be the operation on

which the three kinds of consequence tests are based.

Logical tests for consistency and consequence are given in Theorem 4.6 for clauses containing the default

operator. These are given for DP and, because the error propagation functions are linear, can be extended

to QDP simply by dropping the error subscripts.

Theorem 4.6 Consider the Dp sentence D given by

DU Ai¢Sv oR A_EI,_A_ =_,_ Bi ,

where ei < _, _ for i E IA. Let Ima, denote the (possiblyempty) mazimum subse_ of IA, I, such that

U A (ViEIAI) AiEI (Ai --_Bi) isunsatisfiable.Such a mazimum set ezistsand isunique.

1. The sentence D isinconsistentifand only ifthereezistssome j E Iv such thatU A I_ AiEx...",Ai is

unsatisfiable.

2. The Dp sentence C =_6 B is a consequence of D for some 5 < _ if and only if D A (C :_6 ",B) is

inconsistent. This holds if and only if D itself is inconsistent or O-_C is a consequence of D or there

ezists some ] C_IA such that

U A (C vi_ Ai) ^i_: (A,-_ Bi) A (C -_ _B)
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4.

is unsatis]iable. I.f C =:'6 B is a consequence for some 6 and can be demonstrated so using J, then

6 = _-_i_I ei is a correct error propagation function.

The Dp sentence oC is a consequence o.f D i.f and only i.f D A r3-,G is inconsistent.

The De sentence DC is a consequence of D if and only if D itself is inconsistent or

U Aict...-_A_--,C.

When treating sets of sentences containing only proper defaults, the consistency test of part 1 has a special

ease. The set is consistent only if Iraax is empty. If the set is inconsistent, then Imaz represents the maximum

set of proper defaults that could be considered the cause of the inconsistency. In this proper ease, a necessity
can only be a consequence of a consistent set by standard logical deduction from other necessities. In general
however, with some improper defaults, whether a necessity is a consequence may depend on all elements of

the set including the defaults. Theorem TT' is an example.
The resultant algorithm for checking consistency of QDP sentences is given in Figure 3.

Corollary 4.6.1 The de.faults-consistency algorithm is correct and uses at most Ifv [ + [IAI2/2 satisfiability

tests on the nnderlying propositional logic.

The third step of this algorithm also forms the basis of testing the consistency of sentences containing only
the necessity and possibility operator. Any such sentence can be converted to a conjunctive normal form

consisting of a disjunction of conjuncts of the form OU Ai_lv ova. Each conjunct can be tested for consistency

using the first step.

Corollary 4.6.2 Let the QDP sentence D containing only the necessity and possibility operators be in

conjunctive normal .form, and let [D[ denote the number o/modal operators in the sentence. Then the
consistency of D can be determined using less than [DI satisfiability tests on _he underling propositional

logic.

The drawback with this result, however, is that the size of the conjunctive normal form of a sentence can be

exponential in the size of the original sentence.
Tests for consistency and consequence using the likelihood operator are given in Theorem 4.7.

Theorem 4.7 Consider the De sentence D given by

1"3[]" Aifi;v oVi AiEIA Ai _'t, Bi ,

where ei < _ .for i 6 It. Let Imi, denote the least subset o/It, I, such that U Ai_x _Ai A Aj A Bj is
satisfiable .for all j 6 I a - I. Such a minimum set is unique.

I. The sentence D is inconsistent i/and only if there ezists some j 6 Iv such that U Ai6Iml. _Ai A ]_ is

unsa_isfiable.

2. The Dp sentence C _-1 B is a consequence o.f D/or some f < 1 i/and only i/D is inconsistent or
there ezists an ordered subset o.f the indices in Ia - Imi,, ix, i2,..., ih, possibly empty (h = 0), such

that/or j = 1,..., h,

U AiEI..,. -'Ai A Aij A Bij Ak<j -'Aik "* (C A B) , and (5)

I.fconsequence holds, then a lower bound on .f , the error propagation function, is given by

/ > wheree= ndn elh,
-- ' l<k<h
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although the error propagation function can be linear in the el in some cases.

The Dp sentence oC is a consequence of D if and only if D A O_C is inconsistent.

The Dp sentence QC is a consequence of D if and only if D is inconsistent or

U ^let,.,. -,At -* C.

There is also a special case of this theorem that applies to non-iterated versions of the likelihood operator.

Coronary 4.7.1 Coaside_ _he QDp sc_atenee D given by

r_U AiF.Zv o1_ A_L, Ai _ Bi •

The QDp sentence C _- B is a consequence of D if D is inconsistent, or there ezi_s some I C Ix - I,,_n

such that for j E I,

cr ^,ex.,.-,A,̂ as ^Bi --."(C^ B) ,and (7)

U Ai_x.,. "-At Aj_I"Aj --* C--_ B. (8)

I conjecture that the converse of this theorem also holds. The dual form of the corollary, converted to apply
to defaults, allows a disjunction of defaults to be the consequence of a single default. An example of this

corollary is theorem TIT and its dual.
An algorithm for checking consistency of QDP sentences is given in Figure 4. Step 2(b) has been added

to this to make the algorithm more efficient when some of the likelihood operators are proper.

Corollary 4.7.2 The likelihood-consistency algorithm is correct and uses at most [Iv I+ 1IA[2/2 satisfiability

tests on _he underlying propositional logic.

An algorithm for checking.consequence is given in Figure 5. This algorithm assumes the consistency check
has already been made. _e error propagation function in this case can be taken from Theorem 4.7 part 2,

and a tighter error propagation functio_is given in the preof'of tha_ theor_In.

Corollary 4.7.3 The likelihood-consequence algorithm is correct and uses at most (]Ia[+ 1)2/2 satisfiability

tests on _he underlying propositional logic.

5 Applications

This sections demonstrates the use of the qualitative logic QDP on three anecdotal problems that reoccur

in the default reasoning literature.
The first example resolves the paradox of the "vanishing subclasses". The second example demonstrates

how reasoning about independence using causal networks can be integrated with the forms of plausible
reasoning just developed. The final example is the classic Yale shooting problem [8]. This example highlights

a subtle problem with the situation calculus when it is used for plausible reasoning.

5.1 The "vanishing" emus

Neufeld et al. have criticised the modelling of default reasoning based on infinitesimal probabilities [20, p123]

on the grounds that it makes "subclasses vanish". Consider the following rules:

Emu -* Bird ,

Emu =_ -Flies,

Bird =_ Flies.

(9)

(lO)

(11)
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The followingare consequences.

We can conclude that "typically,birdsaren'temus" and "typically,thingsaren'temus". To show the first

isa consequence using Theorem 4.6,noticeU = (Ernu ---*Bird),Iv = 0,and try to show the rulestogether
with Bird ::_Ernu isinconsistent.This followsbecause the rulesthemselvesare consistentand

U A (Ernu V Bird) A (Ernu ---, -,Flies) A (Bird --* Flies) ^ (Bird --* Ernu)

is unsatisfiable.

Ifwe take the O(_) semantics ofthe defaultoperatorliterallythen we could conclude,since_ isinfinites-

irnal,that "no birdsare emns", or "nothing isan emu". The realintentofthe semantics,however, isabout

approximations for e small. So insteadwe should concludethat the emu isjustan uncommon ornon-typical

bird,which in realityistrue of emus. The approximate probabilisticsemantics does not cause subclassesto

vanish;but itmay cause you to deduce some subclassesmust be non-typical.

5.2 Can Joe read and write

The importance ofindependence indefaultreasoning,and plausiblereasoninggenerally,has been underlined

by Pearl in his simple problem "can Joe read and write?" [7,Sct. 10.3].This isa good example of why

general transitivityshould not hold for defaultreasoning. A twistisalso given at the end to show how

likelihoodreasoning can complement defaultreasoning.

Pearl introduces the propositions(Ihave alteredthe symbols)

Over-7

RdWr

EngPrf

Shakes

= Joe isover 7 yearsold ,

------Joe can read and write,

-- Joe'sfatherisa Professorof English,

- Joe can recitepassagesfrom Shakespeare.

and the default rules (expressed in QDP)

1"£dWr _ Over-7 ,

EngPrf =_ RdWr ,

Shakes =_ ItdWr . (12)

Let Aliterac_denote ruleset (12). Pearl also assumes that Joe isover 6 years old and isnot retarded,so
that the defaultrulesabove seem reasonable.

Given, inaddition,that Joe recitesShakespeare,Pearlargues that a reasonableconclusionisthat Joe is

over seven years old. That is,we want tobe able to inferthe defaultrule

Shakes =_ Over-7. (13)

On the other hand, given that Joe'sfatherisa ProfessorofEnglish,itisnot a reasonableconclusionthatJoe

isover seven years old. An argument being that Joe'sfather'sprofessionadequately explainsJoe'sliteracy,

so we don't need the more common explanationthat Joe isover seven years old.We do not want to be able

to inferthe defaultrule

EngPrf ::_ Over-7 . (14)

The problem with the formulation at present is that the constraints on Shakes and EngPrf are syntac-
tically identical, but we hope to infer conflicting default rules for them. In QDP (and in NP) it happens
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that neither default rule (13) nor (14) can be derived. We do get, however, that

Aai,e,,c_ _QDP EngPrf :_, Over-7 _ (EngPr.f ^ RdWr) _ Over-7,

Aaite,.c_ _QDP Shakes ::_ Over-7 .---, (Shakes A RdWr) =_ O_er-7 . (15)

The problem as it stands is underconstrained. So, what information is missing?
Pearl's solution to the problem introduces the notion of causality. For instance, Joe's literacy is a partial

cause (and the only direct one occurring in the formulation) of Joe being able to recite Shakespeare. What

Pearl alludes to but never explicitly mentions is the causal network (a Directed-Acycllc Graph (DAG) [35])

given in Figure 6. In this network, arcs correspond to the intuitive notion of _can cause".
As Pearl and Verma explain, such a causal network provides information about independence [35, deft-

nition for DAGD, p376]. It should be pointed out that the notion of causality is merely incidental to their
analysis: it serves as a useful, intuitive focus for acquiring knowledge about independence. We can subse-

quently apply the dependence information so obtained to default and likelihood reasoning using Lemma 4.3.

Applying Pearl and Verma's technique of deducing independence relations to Figure 6, we get that Joe's
Shakespearean recital is independent of Joe being over seven, given he is literate. In QDP, it follows that

RdWr ::_ Over-7 *---* (Shakes A RdWr) =_ Over-7 .

Let us denote by P1 the dependence information obtainable from Figure 6. Together with the default

conclusion (15), we get

A/iteracy U rl _QD/' Shakes ::_ Over-7 .

The same does not hold for EngPrf, however, because in contrast we get that Joe's father's profession

is not independent of Joe being over seven, given :loe is literate. Because of this, the truth or falsehood of

default rule (14) is undetermined from Aiiter,cy and rl. But, if we were also told that it is likely for a child
of a Professor of English to be under seven years old and literate, then default rule (14) becomes false as

requl_ed. That is4.

Aut,,acy U {EngPr.f _- (RdWr A --Over-7)} _ODP -,(EngPr/ =¢. Ovee-7) .

5.3 The Yale shooting problem

A second problem that needs to incorporate independence for a solution is the Yale shooting problem [8].

This problem has been the subject of considerable discussion in AI, and it is beyond the scope of this paper

to give a reasonable survey. In this section, the specific solution of Delgrande [36, Section 6.21 is considered.

In probabilistic reasoning it is important to differentiate between what is currently known, and what is
not. However, the situation calculus, in which the Yale shooting problem is usually presented, allows the

representation of knowledge about static properties of a state but represses the representation of knowledge

about events. This causes problems in the subsequent representation of defaults, which we discuss below.

The Yale shooting problem can be presented briefly as follows: a gun is loaded; one waits for a moment;
a shot is fired. We should conclude by default that the person is dead, assuming, of course, the gun was well

aimed at the person, etc. Early default reasoning systems could not make this conclusion; during the wait,

the gun would not stay loaded by default.
Delgrande [36, Section 6.2] initially suggested a situation calculus representation of this problem in NP

that in QDP becomes:

tiT(Alive, So) ,

4Derive this result ,_ follows. From EvtgPr_ _- (RdW_ A -_O_e¢-7), the conditioned version of theorem TIO, and the
conditioned veraion of the theorem given in Equation (2), infer -,(EngPr_ A l?,dWr -_ Ouer-7). Finally, combine this with
ddault rule (15).

19



nT(Loaded, Result(Load, s) ) ,

T( Loaded, s)_ T(Dead, Result(Shoat, s) ) ,

r(.f, s) = r(.f, Re,,,n(e, s)).

Variablesare given by e, f and s, and stateSo issome constant startingstate. The firstsentence reads

"Alive isnecessarilytrue instateSo", the third"ifLoaded istrueinsome states then typicallyDead willbe

truein the stateresultingfrom a Shoot instates',etc.Assume Result(S,) isdenoted Sn+1. To adequately

handle the shooting problem we now wish to inferthat contingenton a certainsequence of events taking

place,a death willoccur.

T(Load, So) A T(Wait, S,) A T(Shoot, S_) =_ T(Dead, $3) •

As Delgrande pointsout,thisformulationcannot be correct.From the second sentence and theorem T6'

we get

-.T(Loaded, s) =_ T(Loaded, Result(Load, s)) ,

and together with an instance of the fourth sentence (f = -'_Unloaded),

-.T( Loaded, s) =:. -_T( Loaded, Result(Load, s) ) ,

from theorem TT' we get

QT( Loaded, s) .

That is, the gun is always loaded! If we added an Unload event to the above formulation that resulted in

the gun being unloaded, we could similarly deduce that the gun is always unloaded!
Delgrande suggests repairing this conflicting state of affairs by changing the last sentence to (assuming

that equality is introduced)

(f = Alive) V (T(.f, s) ::_ T(f, Result(e, s))) ,

(e = Shoat) V (T(Alive, s) =:. T(e, Result(Shoat, s))) ,

which together say people do not tend toremain aliveifthey are shot,or changing the second lastto

(T( Alive, s) A T( Loaded, s) ) =_ T( Dead, Result(Shoot, s) ) .

In addition, we will have to take this kind of evasive action for every event type. Adopting the first strategy,

the simple concept "things tend to stay the same" is starting to look decidedly lengthy. We are required to

explicitly detail all those exceptions default reasoning is supposed to circumvent. The second strategy seems

to introduce an unnecessary complication: if you shoot a dead person they will remain dead, so why bother

specifying they should be alive before the shooting.
The real problem lies with the representation of knowledge about events. Without knowing which event

occurs at a state, we know things will tend to stay the same. Once we know which particular event occurs,
however, we also know for sure that certain things will change. The antecedents in the conditionals in

Delgrande's formulation need to be qualified with knowledge about events to block the conflict between
the second and fourth sentences. We do this by modifying the sentences to allow explicit representation of

knowledge about events:

[3T( Alive, So) ,

rn(T( Load, s) --. T( Loaded, Nezt( s) )) ,

T( Loaded, s) A T( Shoot, s) =:. T( Dead, N ezt( s ) ) ,

T(I, s) = T(I, Nezt(s)) ,
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whereT(e, s) about an event e such as Shoo_ denotes that it is known that the event e occurred in situation

s, and Nez_(8) denotes the state after state s. Denote this set of sentences by A,hoo,_,_.
But with the problem as formulated in A,hoot_,g , the required result is not forthcoming. Again we need

information about relevance to show how the redrafted sentences can have their antecedents sufficiently

specialised.

First, the following can be inferred from the third rule in A,hooti,g given that if a loaded gun is shot at

someone, then events strictly prior to the shooting are independent of possible death,

T( Load, So) A T( WaiL $I) A T(Shoot,$2) A T(Loaded, $I) A T( Loaded, $2) =_ T(Dead, $3).

Second, the following can be inferred from the fourth rule in A,_ooti._given that whether a gun stays loaded
is only depender_t on prior Unload or Shoot events.

T(Load, So) A T( Wait, S,)A T(Sho_, $2) A T(Loaded, S,)=_ T( Loaded, $2) •

This information about independence, call it r2, issufficient to yield the required result.

Ao_oo,i.9U r2 _QDP T(Load, So) A T(Wait, S,) A T(Shoot, $2) =_ T(Dead, $3) •

Notice that F._ could have been obtained automatically using the default independent assumptions of maxi-

mum entropy.
The specification of F2 can be seen to involve as much detail as Delgrande's earlier suggestion. So where

is the advantage? The defaults remain in a simple form, and the exceptions are instead coded in the modular

form of causal (independence) information about events.

6 Further Comparisons

This section compares the logics DP and QDP with some related approaches. Halpern and Rabin's and

Halpern and McAllester's likelihood logics, and Neufeld et al. influence graphs are compared because they
have also been motivated by probability. Comparisons with Adams' conditional logic have been sprinkled

throughout Section 4, and axe not reiterated here. The last comparison given here is with Delgrande's NP;

this system had an historical influence on the logics DP and QDP.

6.1 Halpern and Rabin's likelihood logic

Halpern and Rabin propose the unary likelihood operator L with semantics [14, p386]

Lp is best thought of as saying Up is reasonably likely to be a consistent hypothesis."

This should not be confused with Up isreasonably likely",the intcrpretationHalpern and McAllester give

to Lp [9, p5].
For instance, suppose a lottery with 1,000,000 tickets is being held, then the following can be deduced

by applying their Axiom AX6 repeatedly:

L(someone will win the lottery)

1,0oo,0oo

V L(person i will win the lottery) .
i=l

(16)

The righthand sideof thisequivalencereads,thereexistsa particularperson who islikelyto win the lottery.

In the Oxford dictionarysense ofthe word "likely",thisiscertainlynot true beforethe lotteryisheld.So in

the Halpern-McAllester interpretation,the sentence (16) above can be interpretedas true *-*false.This is
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a variant of the lottery _paradox". Because they assume that likelihood reasoning is precise, they conclude

that the Halpern-Rabin interpretation must be more appropriate.
By contrast, in the framework proposed here it is taken for granted that likelihood reasoning may be

imprecise. As explained after Definition 4.5, QDP suffers from the lottery "paradox" in a sense, but it is
viewed as an anomaly, an inherent consequence of modelling imprecise reasoning with a precise logic. Of

course, such anomalies can be avoided by either using heuristics about plausible reasoning (_don't make too

many assumptions"), or by resorting to numeric methods which allow more careful tallying of degrees of

imprecision.
Notice that interpreting Lp to mean up is a consistent hypothesis" yields the following transformation to

QPD: Lp _-, op, and Gp _ t_p. Indeed, their axioms on non-iterated modalities each have a corresponding

theorem in QPD.
Halpern and tLabin propose instead that iterated modalities of the form LiGp be used to model up is

reasonably likely", and they give soundness results to support their claim. There is, however, a serious

methodological problem with this approach: knowledge expressed in the form they propose is non-modular
and cumbersome. A sentence such as _P, is reasonably likely given P_ is represented in QDP simply as

P_ _" P1. In their logic it translates to

_G_P_ ^ _GP.. ^ _GP4 ^ GP3 _ LGP,

in one situation, and
-.GP, ^ -.G-.P2A -.GP4 ^ GPs _ LGP,

in another. These cumbersome translations occur because, as they explain [9, p7], their representation has

no means of making likelihood contingent on what is currently known (for instance, by using conditioning,

the role played by the left hand side of the "_-" operator). Worse still, if the model (and consequently

the atomic propositions used) becomes extended, the appropriate translation must be extended as well. In

addition, Halpern and Rabin give no evidence that non-trivial theorems hold about iterated modalities of
the form L i G.

6.2 Neufeld and Poole's favouring formalism

Neufeld et al. present inj_ue, ce yraphs, a qualitative system for reasoning about faroariag [20] that is related

to Suppes' causal algebra [37]. B favours ,4 when Pr(,41B ) > Pr(,4). It was argued in Section 4.5 that

favouring provides an important complement to the logics presented here.

Favouring alone, however, is not sufficient information on which to base a decision. This stems from the
fact that favouring is for reasoning about shift in belief and not current strength in belief. For instance, it

is well known now that smoking favours cancer (that is, a smoker is more likely to have cancer than a non-

smoker). But the knowledge that a person smokes is not sufficient evidence on which to base a conclusion

that the person has cancer. It merely provides an additional degree of support for such a conclusion.

6.3 Delgrande's conditional logic NP

There is a strong correspondence between the theorems of QDP and Delgrande's NP [1]. The only axiom
of NP that is not also a theorem of QDP is the CV axiom given by

-(,4= B) -. (,4= C) -. (A ^ -_B)= C,

although thisissimilarto the QDP theorem TI4'. Notice,however, that,by adapting TI4' we get that

_,p _(A =;',6/2 B) -. (,4=_. C) -. (A ^ -_B)=6 C.

This version of the CV axiom does not also become a theorem in QDP because the first default has an error

that is a different order of magnitude to the second two defaults (e6 compared with • and 6).
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Also, necessity is introduced into QDP and NP in a very different manner. Nevertheless, theorems
involving necessity in NP given in [1] are also theorems for QDP. Consequently, almost every theorem of
NP that is a sentence of QDp is also a theorem of QDP.

7 Conclusion

This paper has examined the problem ofreasoningabout defaultsand likelihoodfrom a probabilisticperspec-

tive.The presentationhas been one of theoreticalanalysis,comparison with existingsystems, and review

ofanecdotal examples. The approach developed has extended some existingsystems [19,7,1]and put some

others in a clearerperspective[14].This highlightedthe approximate nature of the reasoningforms, the

dualitybetween them, and the need for complementary reasoning about relevanceand errorpropagation.

Algorithms have also been presented for determining some types of consistencyand consequence for both

logics,qualitativeand quantitative.

The followingresearchissuesgivesome idea ofhow thisarea might be furtherdeveloped.

Causality,independence [7]and favouring[20]play a complementary but vitalroleto defaultand likeli-

hood reasoning.They helpinthe determinationofrelevance,forthe derivationofplausiblerulesapplicableto

a system's currentcontext.Suppose we have separateinformationabout relevanceand defaults.How might

reasoning about both these forms be integrated? For instance,how can the consistencyand consequence

algorithms be interfacedwith algorithmsforreasoningabout independence?
There isa remarkable Similaritybetween Delgrande'sconditionallogicNP and the probabilisticlogics

presented here. With the necessityand possibilityoperators,the logicspresented here have an abilityto

expresssentencesroughly in the realm ofautoepistemicordefaultlogics.What are the relationshipsto these

other approaches?
How should the effectof the decisioncontextbe integrated?For instance,one would liketo be able to

obtain the defaultreasoning structurepresentinthe layeredcontrolsystems of Brooksian robots [38],where

each layerisintended to handle a differentclassofdecisionproblems. How might these layeredsystems be

developed?
Given that defaultsand likelihoodshave been representedhere as probabilisticrules,how might they

be learned from data? Machine learningtechniquesforruleinductionhave been developed,but theseonly

allowingone particularpropositionalsymbol (orconcept)in the consequence ofthe rule.Some methods axe

describedin [39,40,25].To learna setofdefaultsand likelihoods,more generalapproaches are requiredthat

simultaneouslylearn ruleswith a varietyofdifferentpropositionalsymbols in the consequence,as found in

[41].
At what point does qualitativereasoningof QDP have to be augmented with quantitativereasoningof

DP to produce reliableresults?Furthermore, when do the approximations inherentin DP break down so

that a system needs to be developed using more thorough probabilisticreasoning? It may be necessaryto

reason about uncertaintyusing approximate numeric techniques,and to use the plausiblelogicsdeveloped

here merely atthe man-machine interface.For instance,one observableuse ofdefaultand likelihoodreasoning

inpeople isexplanation and presentationof results.
Implementation and applicationto realproblems isclearlyone important way to exploretheseplausible

reasoning forms further.
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Appendix Proofs of Lemmas and Theorems

Proof of Theorem 4.1 First, substitution instances of propositional logic hold for DP because the

interpretation of theorems for DP is given in terms of propositional logic (_not", _and ", etc.). Suppose
E E QDp is some substitution instance of a theorem of propositional logic. Consider E* E Dp obtained by

transforming :_ to =_e and _-" to _'e- for some e and e. E* is also a substitution instance of propositional

logic, so it is a theorem of DP. As this holds for arbitrary e and e, E is a theorem of QDP.
Second, equivalences can be substituted. Suppose Pr(A _ B) = 1, then

_,(ccA))= P,CCCA)^ CA _ v))= P,CCCB)^ (A_ B))= P_CCCB)),

and the result follows from the definition of a theorem in DP. A similar proof applies for QDP. o

Proof of Lemma 4.2 Any sentence that holds for an arbitrary probability distribution must hold for

an arbitrary probability distribution conditioned on some C given that Pr(C) > O. That is, given that

Pr(C) > O, we can make the transformations

Pr(A) _ Pr(AIC)

Pr(AIB) _-. Pr(AIB ^ C)

and the sentence must still hold for any arbitrary probability distribution. This corresponds to the trans-

formations given in the lemma. Notice there is no confusion in applying the transformations because the

operators do not nest. [3

Proof of Lemma 4.4 First, notice that the order of magnitude definition of Definition 4.5 applies if and

only if there exists constants ci for i E IA and di for i E Ic and D such that for all e < D and probability

distributions Pr,
_p. DU ^iezv o_ ^iEZA Ai =.,. Bi -- Vi_xcGi _J,. Hi • (17)

To show the only if part of the theorem, assume the 5, e condition in the lemma holds. Then let c_ = 1

for i E IA and di = 6 for i E Ic, so by above, the clause is a theorem of QDP.
To show the if part of the theorem, assume the clause is a theorem of QDP so constants cl for i E IA

and dl for i E Ic and 17exist as above. Let a = mini¢I_cl, and 5 = _naz_E_cdi/_, and _f = _. Pick any

d < _7' and note • = d/_ < _7. We now have that 1 - cte _< 1 - d, and 1 - die > 1 - 6e'. So if a probability
distribution Pr satisfies the clause (17) using _ and e, then it also satisfies the Dp clause in the theorem

using _7' and e'. So this clanse is satisfied for every distribution. []

Proof of Lemma 4.5 The proof proceeds as for Lemma 4.4 but using

_p, OU AiExv oV_ Ai_.z_, At _'c,,._Bt --_ ViEzcGi _d,_', Ht .

instead of formula 17. There is a difference in showing the if part of the theorem; 5 is now constructed in an

inverse manner. Let

dl
a = rnuztexc "¢/'_, and ,5= rni_Xc _ ,

and proceed as before, noticing that we are dealing with quantities such as 6(e')"' rather than 1 - 6d. []

Proof of Theorem 4.0 part 1 First, we shall prove I=o, exists and is unique. Construct I,,°, as follows.

Let I = IA. If there exists a ] E I such that UAA_ AiEl (At -'_ Bt) is satisfiable, then this also holds for any
other I containing ], so j cannot be in any Imo=, irrespective of uniqueness. So remove j from I and notice
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ifany /ma= exists,irrespectiveof uniqueness,itmust stillbe a subset of thisnew I. Repeat thisprocess

untilI cannot be furtherdecreased in size.So now U A (VtezAj) ^fez (At --*Bt) isunsatisfiable,or I - 0.

By construction,any j 6 Z.t- / cannot be inany Ira,=,so letting/=o= --I we have that maximality and

uniqueness hold.

Second, assume D isconsistentand we shallprove the unsatisfiabilityconditionofpart 1 fails.Notice

that if_ E --,F then Pr(F) > Pr(E) for any probabilitydistributionPr. So from the definitionof I,,,,=,

for any probability distribution such that Pr(U) = 1, Pr(Vtez...At A ",Bt) > Pr(Vlez=.°Ai). Therefore,

mazteI... Pr(At A "_Bi) > _tez....Pr(AtA"B_) > Pr(Vtez..°AiA'_Bt) > Pr(A i)

N=.=I - [Z=., I -IZ=.=l

for any ]. Therefore either Pr(Ai) = 0 for all ] E I=.., or for at least one j E IA, P*'(-_Bj[Aj) > [f_ > ej.

If Pr demonstrates D is consistent, then the second option must fail, so Pr(Ai) = 0 for all ] 6 I.,.=. Since

Pr(Vj) > 0 for j 6 Iv, then it must follow that Pr(UAI_ Atez..."At) > 0, and the unsatisfiability condition
must fail.

Third, assume the unsatisfiability condition fails and we shall prove D is consistent. By the definition of

Ira.= there exists an ordering of I^ --I,,.= given by it .... ,/.,, such that UAtez..°--At AA 0 Ak>j (A,, -, Bt. )

is satisfiable for ] = 1,..., m. Let truth assignment *j demonstrate this satisfiability for j = 1.... m. Also let

truth assignment t_ demonstrate the satisfiability of U A 1_ AteI.... --At for ] 6 Iv. These second assignments
exist because the satisfiability condition fails. Now define the probability distribution Pr as

H/ml,...,m el!

k=,.....= zfx.....k-x IZvl '

where the truth assignment t(C) takes the value 1 if C is satisfied by *, and 0 otherwise. By construction,

this is a well-defined probability distribution that satisfies all the right inequalities for arbitrary et < 1. D

proof of Theorem 4.6 part 2 To show the only if part of the theorem, assume D A (C =t.6 "-B) is

consistent. If C :_6 "-B with 6 < ½ then clearly -,(C =_6 B), so D A ",(C ::_6 B) is consistent, so it must be
false that _DP D --* (C :_6 B).

To show the if part of the theorem, assume D A (C =_6 -_B) is inconsistent. By formula 4, to show

C ::_6 B is a consequence of D it is sufficient to show it is a consequence of D A oC. If D is inconsistent,
then consequence follows by default. If D A oC is inconsistent then consequence follows as well. So assume

D A oC is consistent, by part 1 of the theorem and the original inconsistency assumption, it must follow that

^ (v  sA,v C) ^ es(A,-.B,)^ (C-.

forsome J C_It. From the second halfof the proof forTheorem 4.6 part 1,thisfollowsfor any 6 < i,not

just 6 < I/hi" Noting that (Vte_At V C) is equivalent to (Vte_rAi V C Aie_, "_At) and taking this disjunction
out through the negation, it follows that

_= U A (Vtej, Ai) Aie.r (At --_ Bt) -" CAB ,

U ^CA-,B -- v_esAt A-_B_.

Notice that if _ E --, F then Pr(F) >_ Pr(E) for any probability distribution Pr. So for any distribution

Pr such that Pr(U) = 1,

Pr(C A B) > Pr((VtejAi) Ares (At -* Bi)) = Pr(VtesAi) - Pr(VtcsAt ^-,B_) ,

and Pr(Vte_rAt A "_Bt)> Pr(CA _B). Let Pr be any probabilitydistributionsatisfyingDU Ate_v ol_ ^te_
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(A_ =_,, Bi). So Pr(Aj A ",13#) <_ _jPr(Aj) <_ ejPr(V_e1A_ ) for any j even if Pr(Aj) "- O. Consequently,

iEJ

Let 5- (_,¢j _,). So

1
1)Pr(ViejAi A--B_)'> _-_Pr(C A -_B)Pr(C ^ 8) > (-_ - _ ,

which is the required inequality to show C =#6 B. Cl

Proof of Theorem 4.6 parts 3 and 4 The sentence oC is a consequence of D if and only if D A -- o C

isinconsistent,by definitionofconsequence and inconsistency.Replacing "_o C by G--C shows part 3 holds.

Similarly,part 4 holds but thistime we can simplifythe inconsistencyof D A o-,C by usingpart 1 of the

theorem. O

Proof of Corollary 4.6.1 Step 2 constructs I,,,_ as described in the proof to part 1 of the theorem.

Step 3 then checks the unsatisfiability condition of part 1. In

Proof of Theorem 4.7 part 1 First prove Im_n exists and has a unique minimum. Notice IA is an upper

bound on I,,,n, so some (but not necessarily unique) Imi,, exists. Suppose a set I' exists which is a subset

of every possible I,,,n, and that U A_Gz, --A_ A A i A B i is unsatisfiable for some # E IA -- I'. Then this
unsatisfiability will also hold for any Im_n, so j must also be in Ira,,. So we can place # in I _ too. If we start

with I' - 0 and iterate this operation to a luted point, we clearly obtain the unique I' - Imi,, because an

invariant of the operation is "any I,,,,, must be a superset of I_'.
Suppose the unsatisfiabillty condition fails, that is, for each # E Iv that U Aicz..,. --Ai A 1_ is satisfiable.

So there exist truth assignments demonstrating the satisfiable of these. There also exist truth assignments

satisfying U A_Ez.,. "_Ai AAj ABj for # E I_t --I,,,n, by the definition of I,,,,,. Take a probability distribution
that makes each assignment in the first set infinitesimally small, each assignment in the second set equiprob-

able, and any other truth assignments probability zero. So Pr(T_) > 0, and for # E IA -- Imin, Pr(Bj[Aj) is

greater than or arbitrarily close to I z'I , etc. This distribution demonstrates D is consistent.
| A|--I mi_l ..... •

Suppose D is consistent. Consider any probabilitydistnbutmn Pr that demonstrates thin. Let I =

{i E IA : Pr(A_) -- 0}. So Pr(UAiez',Ai) ----I. Since Pr(Vj) > 0 for each j E Vj, itfollowsthat

Pr(U A_el "-Ai A _) > 0 as well,so the correspondingpropositionalsentence must be consistent.Also,

Pr(Aj) > 0 for _ E IA -- I, so since D is consistent Pr(Aj A Bi) > 0 and Pr(U A_e! -_Ai A Aj A Bj) > 0, so
the corresponding propositional sentence must be consistent. A side effect of this is that Im_n C_I, therefore
the above satisfiability conditions holding for I also hold for I,,,,, as required for the theorem. IZl

Proof of Theorem 4.7 part 2 First prove the only if part of the theorem. So assume C m_-6 B is a

consequence of D for some 5. It is sufficient to prove that if D is consistent and U Aie_.,. --A_ A C A --B is
satisfiable, then there exists an ordered subset of the indices in I_t - Im_, i_, i2, .... i_ such that formulas (5)

and (6) are true. Do this by contradiction. Suppose there does not exist such an ordered set of indices. Then
there exists an ordered subset of the indices in IA --I_n, I- ix, i_., .... iS such that formulas (5) are true,

but formula (6) fails and there does not exist an index i_+z such that formula (5) applies for that index.

Note that this occurs only if

r%A,e:.,. -.A, A A# A 9#A,_:-,A_A -,(CA B)
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is satisfiable for every ] E IA -- Imin -- I, and

U A_EI,.I,.-`Ai A_EI -_Ai A C A -`B

is satisfiable.Call the set of [Ix - I,,..-l] truth assignments satisfying the firstform above TI, and the truth

assignment satisfying the second form T2. By the definition of Imin, we have that U AiEI._. -`Ai A A# A ]3# is

satisfiable for ] E I. Call the set of [If truth assignments satisfying this T3. Finally, since D is consistent, we

also have that U A_EI._ . --,A_ A _ is satisfiable for ] E Iv. Call the set of lIvl truth assignments satisfying

this T4. Now for _} vanishingly small, consider the probability distribution Pr that makes truth assignments

in T4 have probability _'T' those in T3 have probability _:_, the one in T_ have probability U(1 - _/),

those in T, have probability N_--_:._.-II' and any other truth assignment have probability 0. This makes

*-,l for ] E IA -- I,n_. -- I, Pr(-`BIC) > 1 - ,7, etc. Clearly, Pr with a suitable value
Pr(B_IA_) >_ V_-1.,.-It

of v/can be used to demonstrate D A -`(C _,1 B) is consistent for any f < 1. So we have proven the

contradiction.

Next prove the if part of the theorem. Clearly, consequence holds if D is inconsistent. So assume it

is consistent, and assume without loss of generality that ij = ] for notational convenience. Consider any

probability distribution Pr such that

_Pr nU AiEIv o_ AiEIA Ai _P'¢i B{ .

So for each # e IA - Imp.,

P (AiA _> P (Ai (lS)

even if Pr(Ai) = 0. From part I of the theorem we also know that Pr(U Aiez..,.-_Ai) = I, so this term can

be effectivelyignored in probability statements that follow. If h = 0, then from formula (6) it follows that

Pr(C --* B)=I, which implies Pr(B I C) = i, so the ifpart holds. Otherwise, h >_ i. From formulas (5)

and (6), we have that

U A_Gz.,. _Ai Ak<h (A_ -* B_) -_ (C -- B),

so

_Pr(Ak A-`Bk) > Pr(Vk_<hAk A-,Bk) > Pr(CA-`B).

Also, there must exist sets Pj C_ {i, ....] - I} such that formulas (5) can be replaced by

U A_z._. -`Ai A A i A B i Akep _ -'At --'(C A B) ,

(19)

for ] = 1,...,h. Then

> > e (A#

These inequalities are strung together below to produce the desired result.

For ] 6 1.....h, define

(20)

## = rain ek ,
_eP#

1 - e........_i _/_
7_ = ei + __, "_ "

k : j_P_.
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We shall prove by induction on ] that

h "" h h

_-'_TkPr(A_ ABt ACAB)+ _'k! aCp.,l<j _=J
k=j - :

Assume it is true for ] + 1. Consider the case for j. Notice that by formula (18)

" 1 - ejPr(Aj A Bj) + _B _ Pr(A, A Bl)
ei Bi IEej

> Pr(Aj A ",Bj) + X _ ezPr(A,)
- _i,_

>_ P,-(A_A-_B_)+-rj_ P,-(A,).
icpj

Adding this to the inequality for the induction hypothesis, formula (21) with j + 1, we get that

_ , ]_ P,(A,AB,)
_=j+1 • [._..- tfj : IEPh,l<j

h

>_ _'_ Pr(A,A-_B,)+Tj E er(A,).
k=j IEPj

(21)

So

h h

_._ F_, p,.(A,AB,)
: IEPb,I<j

(a 1>_ _ P,'(Ak ^ -,B_) + _i P,.(A,) - P,'(Ai ^ Bi ^ .-,(C ^ B))

By formula (20), the induction step is proven. Notice that this same argument works for the base case of

the induction proof, if we start at ] -- h using 0 >_ 0, so the induction proof is complete.

Finally, for ] - 1 in formula (21), we have that

h h

_TkPr(AkAB_ACAB) > _Pr(AkA-.Bk).
k=l k=l

By formula (19), it follows that

_k Pr(C A B) >_ Pr(CA-B).

So 1
Pr(BiC) > /I

1 + _E_k=*7k

The right-hand side of this inequality gives the error propagation function f for this consequence. This
can be evaluated using the definitions of 7j, flj and Pj given previously. Clearly, the smallest this error

propagation function can be is when Pj = {1,...,j - 1) and _j = e, = e for j _< h. In this case, a simple
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inductionproofshowsthat

"r_-

Summingtheseoverj and simplifying gives

( II '1 -e i+
e

- e+(l-e)(l+_-)h -

In contrast, if Pj -- ¢, and _j - e, then f > _. Q

Proof of Theorem 4.7 parts 3 and 4 The same as for Theorem 4.6 parts 3 and 4. Notice, also, that

Imi,_ remains the same if a possibility is added to D. I:1

Proof of Coronary 4.7.1 The if part of the corollary follows from Theorem 4.7 part 2. Notice that if

Pj - ¢ for each j, then the error propagation functio_developed in the proof of Theorem 4.7 part 2 becomes
• - L.

i + _'_=x L_

This behaves linearly for small ea,. If any Pj _ ¢, however, this linear behaviour no longer exists. []

Proof of Coronary 4.7.2 The repeat loop in Step 2 simply performs the construction described in the

proof of Theorem 4.7 part 1. This iteratively builds up Iml,. The repeat loop terminates when for all
j E IA -- I, U A_! -_Ai A Aj A Bj is satisfiable. Otherwise, the algorithm is a direct implementation of

Theorem 4.7 part 1. []

Proof of Corollary 4.7.3 The algorithm builds the ordered set of indices in turn. Clearly, if it fails at

step 3(c), then no such ordered set can exist. D
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-.o A OA

Pr(A): 0 _ e 1-_ 1

Figure I: Quantitative measures of beliefs in A

--oA

m-A

OA

Pr(A): 0 o(+) O(e)

Figure 2: Qualitative measures of beliefs in A

1 --O(e) 1

IT1 I OA (when _ .,4) ",o A (when _ ",A)T2 I O(A ---,B) -.-,(OA ---,O1)) (-',o A ^ oB) ---,o(_A A B)
T3 (OA ^ oB) -- o(A^_) (oAv oB) .-,o(Av B)
T4 OA --* oA OA ---* oA

Table h Theorem schemata (and duals) on "O" and %"

IT5 I OA .-. _o A oA .-. _o AT6 I o(A --. B) -- (_.A -. _,.B) o(A --. B) -- (_. A -- _, B)
T7 --,(I=_,.A A _+-',A) (l_'-eA V _-.--,A)

T8 oA ^ (A_,B) -. oB (oA A OB) -+ A_-.B

Table 2:Theorem schemata (and duals)relating_=>'_and _.-" Lo _D" and %"

T9 [ A ::_, A A_-e A

TI0 I A=_,B -. I=_,(A--.B) I_-e(AAB) -. A_-.B

TIII (I=_,A A I=_6B) -. _::.,++(A A B) _-e+d (A V B) -' (I_*'+A V l_'aB)

TI2 I F:',A -' (A =:'6B -' _:',++B) _::,,A --" (I_"aB -" A _-j-, B)

TI3 I I=:',A -. (_::'6B -" A ::_,+6B) _::,,A --* (A _-a B -" _-d-, B)

TI4 _ I_',A -' (I=:',B -'* A =:'.hB) I_',A --* (A _-a B --' I_-_ B)

TIb] (A=_,C) ^ (B=_6C) -" (AVB)=_,+6G (AVB)_-.+aC -" (A_-eC V B_-aC)

TI6 I _-e (AAB) -" (',A=_,-_B -" B=_A) I_-,(AAB) -' (B_-a',A -" -,A_-_B)

TI7_ (AVB=_ +_#_,+C) -+ (A =_, O V B =__ C ) (,A_" e C ) A (B _- a C ) -" A V B _" -u-_ z C

Table 3: Theorem schemaka (and duals) on ":::," and _w-"
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' T6' I D(CAA-_B) -- (C=_.A -- C=_.B)

TT' I (C _, A) ^ (C _, -,A)-. o_C

TII' ] (C =, A) A (C =6 B) -. C =,+6 (A AB)

TI2' I C=,A -. (CAA_6B --. C=,+6B)

TI3' I 6'=,A -. (C=6B -. CAA_,+aB)

TI4' I C_-,A --* (C=,B --, CAA=_, B)E

Table 4: Conditioned theorem schemata

Input: A QDp sentence
mg ^iczv o$_ ^icx_ Ai _ Bi •

Output: The consistency or inconsistency of the sentence.

Algorithm: Construct Ima= then check satisfiability.

I. Letl = IA.

2. Repeat,

(a) Find a ] 6 1 such that U A Aj A_¢: (At --* Bi) is satisfiable.

(b) If a j found, I = I- {j}.

Until no ] found or I = @.

3. If for some ] 6 Iv, U A $_ Ai_! ",Ai is unsatisfiable, return i_,consistent

4. Return consistent

Figure 3: The defaults-consistency algorithm
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Input: A QDp sentence

nU AiEIv o*V_ AiEI A Ai _.n, Bi •

Output: The consistency or inconsistency of the sentence.

Algorithn_: First construct Imln, then check the possibility conditions.

1. Let I = 0.

2. Repeat,

(a) Find some j E IA -- I such that U A,_I -_A, A Aj A Bj is unsatisfiable.

(b) If some j found and oAj is in the possibilities in the input sentence, then
return incons_en_.

(c) Else, if some j found, I = I U (j).

Until no j found.

3. 2" is now equal to Im_n. If for some _ E Iv, UA_I"_A_ A_ is unsatisfiable, return

inconsislen_.

4. Else return cons_ea_.

Figure 4: The likelihood-consistency algorithm
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Input: A likelihood C _m D, a consistent QDp sentence

QU A_zv oP_ ^_zA As _.n, Bi ,

and its index set Ira,,.

Output: Whether the likelihood is a consequence of the sentence for some value of rn.

Algorithm: Build up the ordered subset of/A iteratively.

I. If U ^_¢_.,. -_Ai ^ C ^ -_B is unsatisfiable, return is a consequence for any m.

2. Set I = 0.

3. Repeat,

(a) Find some j E I.a - Ira,, - I such that

_ ^,_.,. -A, ^ Ai ^ Bi ^,E_ (A,-. B,) -. C ^ B.

(b) If some 3"found, I - I U {J).

(c) Else return no_ a consequence.

Until U ^i_I.,. "-Ai ^ C ^ --B Ai¢! As is unsatisfiable or I = IA -- In,,.

4. If the loop terminated only because / =/A - Imin, return no_ a conse!lue¢ce.

5. Else return/s a consequence for some m.

Figure 5: The likelihood-consequence algorithm

Figure 6: Dependency network for _can Joe read and write?"
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